Virtual Reality in Healthcare: Medical Simulation and Experiential Interface

Editors:
Brenda K. Wiederhold, Ph.D., MBA, BCB, BCN
Giuseppe Riva, Ph.D., M.S., M.A.
Mark D. Wiederhold, M.D., Ph.D., CPE, FACP, FACPE

http://www.arctt.info
Contents

Preface v

Section I. Editorial

1. The New Dawn of Virtual Reality in Health Care: Medical Simulation and Experiential Interface 3
 Giuseppe Riva and Brenda K. Wiederhold

Section II. Critical Reviews

2. Defining Cyberbullying: A Multiple Perspectives Approach 9
 Alexandra Alipan, Jason Skues, Stephen Theiler and Lisa Wise

3. Explaining Work Exhaustion from a Coping Theory Perspective: Roles of Techno-Stressors and Technology-Specific Coping Strategies 14
 Fulvio Gaudioso, Ofir Turel and Carlo Galimberti

Section III. Evaluation Studies

4. If You Build It, They Will Come, but What Will Wounded Warriors Experience? Presence in the CAREN 23
 Krista B. Highland, Sarah E. Kruger and Michael J. Roy

5. Evaluating User Experience of Augmented Reality Eyeglasses 28
 Luciano Gamberini, Valeria Orso, Andrea Beretta, Giulio Jacucci, Anna Spagnoli and Romina Rimondi

6. Bridging Minds: A Mixed Methodology to Assess Networked Flow 33
 Carlo Galimberti, Alice Chiri, Eleonora Brivio, Elvis Mazzoni, Giuseppe Riva, Luca Milani and Andrea Gaggioli

7. Teaching-Learning: Stereoscopic 3D Versus Traditional Methods in Mexico City 37
 Laura Mendoza Oropeza, Ricardo Ortiz Sánchez and Raúl Ojeda Villagómez

8. The Effect of 3D Audio and Other Audio Techniques on Virtual Reality Experience 44
 Willem-Paul Brinkman, Allart R.D. Hoekstra and René van Egmond

9. The Role of Expectations in Game-Based Training 49
 Christine Kreutzer and Clint Bowers

10. Decision Making and Cognitive Behavioral Flexibility in a OCD Sample: A Study in a Virtual Environment 53
 Filippo la Paglia, Caterina la Cascia, Rosalinda Rizzo, Giuseppe Riva and Daniele la Barbera
 Sandra Poeschl and Nicola Doering 58

12. Being Present in Space: The Role of Allocentric and Egocentric Reference Frames
 Silvia Serino, Daniel Mestre, Pierre Mallet, Jean-Marie Pergandi, Grégory Smitalek, Pietro Cipresso and Giuseppe Riva 64

13. Combining Face-to-Face Therapy with Computerized Techniques: A Therapists’ Attitudes Survey
 Jonathan G. Shalom, Roee Israel and Nira Shalom 69

14. Virtual Reality to Train Diagnostic Skills in Eating Disorders. Comparison of Two Low Cost Systems
 José Gutiérrez-Maldonado, Marta Ferrer-García, Joana Pla-Sanjuanelo, Antonio Andrés-Pueyo and Antoni Talarn-Caparrós 75

15. How to Protect Children from Internet Predators: A Phenomenological Study
 Rodney Alexander 82

Section IV. Original Research

16. The Identity Mapping Project: Demographic Differences in Patterns of Distributed Identity
 Richard L. Gilbert, John David N. Dionisio, Andrew Forney and Philip Dorin 91

17. Using a Facebook Group as an Adjunct to a Pilot mHealth Physical Activity Intervention: A Mixed Methods Approach
 Megan A. Pumper, Jason A. Mendoza, Alina Arseniev-Koehler, Matthew Holm, Alan Waite and Megan A. Moreno 97

18. Chasing The ‘Like’: Adolescent Use of Social Networking Sites in Australia
 Louise la Sala, Jason Skues, Lisa Wise and Stephen Theller 102

 Stefano Triberti, Silvia Serino, Luca Argenton and Giuseppe Riva 107

20. Language in Online Dating Texts: Trait Identification, Homophily, and Their Effect on Attraction
 Nicola Fox Hamilton, Chris Fullwood and Grainne Kirwan 112

21. External Eating as a Predictor of Cue-Reactivity to Food-Related Virtual Environments
 Marta Ferrer-García, José Gutiérrez-Maldonado, Joana Pla-Sanjuanelo, Ferran Vilalta-Abella, Alexis Andreu-Gracia, Antonios Dakanalis, Fernando Fernandez-Aranda, Adela Fusté-Escolano, Joan Ribas-Sabaté, Giuseppe Riva, Carmina Saldaña and Isabel Sánchez 117

22. GETSmart: Guided Education and Training via Smart Phones to Promote Resilience
 Michael J. Roy, Krista B. Highland and Michelle A. Costanzo 123
Section IV. Clinical Observations

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>129</td>
<td>InSPAL: A Novel Immersive Virtual Learning Programme</td>
<td>Julia Byrne, Horace H.S. Ip, Kate Shuk-Ying Lau, Richard Chen Li, Amy Tso and Catherine Choi</td>
</tr>
<tr>
<td>135</td>
<td>Effect of Telephone Calls and Text Messages on Goal Attainment in a</td>
<td>Eleonora Brivio, Fabiana Gatti, Carlo Galimberti, Paolo Gambini and Maurizio Binello</td>
</tr>
<tr>
<td></td>
<td>Ehealth Coaching Service</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Trait and State Craving as Indicators of Validity of VR-Based Software</td>
<td>Joana Pla-Sanjuanelo, Marta Ferrer-Garcia, José Gutiérrez-Maldonado, Ferran Vilalta-Abella, Alexis Andreu-Gracia, Antonio Dakanalis,</td>
</tr>
<tr>
<td></td>
<td>for Binge Eating Treatment</td>
<td>Fernando Fernandez-Aranda, Adela Fusté-Escolano, Joan Ribas-Sabaté, Giuseppe Riva, Carmina Saldaña and Isabel Sánchez</td>
</tr>
<tr>
<td>147</td>
<td>Robotic Companions for Older People: A Case Study in the Wild</td>
<td>Nicola Doering, Katja Richter, Horst-Michael Gross, Christof Schroeter, Steffen Mueller, Michael Volkhardt, Andrea Scheidig and Klaus Debes</td>
</tr>
<tr>
<td>153</td>
<td>Movement-Based VR Gameplay Therapy for a Child with Cerebral Palsy</td>
<td>Sharon Stansfield, Carole Dennis, Hélène Larin and Courtney Gallagher</td>
</tr>
<tr>
<td>158</td>
<td>Development of a Virtual Environment Based on the Perceived</td>
<td>Ferran Vilalta-Abella, José Gutiérrez-Maldonado and Joana Pla-Sanjuanelo</td>
</tr>
<tr>
<td></td>
<td>Characteristics of Pain in Patients with Fibromyalgia</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>A Pilot Study Using Mindfulness-Guided-Relaxation & Biofeedback to</td>
<td>Stephen Theiler</td>
</tr>
<tr>
<td></td>
<td>Alleviate Stress in a Group</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>Rehabilitation Tool: A Pilot Study on a New Neuropsychological</td>
<td>Stefano Cardullo, Luciano Gamberini, Silvia Milan and Daniela Mapelli</td>
</tr>
<tr>
<td></td>
<td>Interactive Training System</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Virtual Reality for Artificial Intelligence: Human-Centered Simulation</td>
<td>Pietro Cipresso and Giuseppe Riva</td>
</tr>
<tr>
<td>182</td>
<td>Importance of Virtual Reality to Virtual Reality Exposure Therapy,</td>
<td>Robert N. McLay, Alicia Baird, Jennifer Murphy, William Deal, Lily Tran, Heather Anson, Warren Klam and Scott Johnston</td>
</tr>
<tr>
<td></td>
<td>Study Design of a Randomized Trial</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>Modeling Aggression and Bullying: A Complex Systems Approach</td>
<td>George Mudrak and Sudhanshu Kumar Semwal</td>
</tr>
</tbody>
</table>

Section VI. Work in Progress

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>177</td>
<td>Virtual Reality for Artificial Intelligence: Human-Centered Simulation for Social Science</td>
<td>Pietro Cipresso and Giuseppe Riva</td>
</tr>
<tr>
<td>182</td>
<td>Importance of Virtual Reality to Virtual Reality Exposure Therapy, Study Design of a Randomized Trial</td>
<td>Robert N. McLay, Alicia Baird, Jennifer Murphy, William Deal, Lily Tran, Heather Anson, Warren Klam and Scott Johnston</td>
</tr>
<tr>
<td>187</td>
<td>Modeling Aggression and Bullying: A Complex Systems Approach</td>
<td>George Mudrak and Sudhanshu Kumar Semwal</td>
</tr>
</tbody>
</table>
34. Confronting Auditory Hallucinations Using Virtual Reality: The Avatar Therapy 192
 Mar Rus-Calafell, Philippa Garety, Tom Ward, Geoff Williams,
 Mark Huckvale, Julian Leff and Thomas K.J. Craig

35. NO-FEAR Airlines: A Computer-Aided Self-Help Treatment for Flying Phobia 197
 Soledad Quero, Daniel Campos, Antonio Riera Del Amo,
 Juana Bretón-López, Miquel Tortella-Feliu, Rosa Ma. Baños
 and Cristina Botella

36. Human Instruments: Accessible Musical Instruments for People with Varied
 Physical Ability 202
 Vahakn Matossian and Rolf Gehlhaar

37. Presence at a Distance 208
 Lise Haddouk

Subject Index 213
Author Index 215
Measuring Co-Presence and Social Presence in Virtual Environments – Psychometric Construction of a German Scale for a Fear of Public Speaking Scenario

Sandra POESCHL and Nicola DOERING
TU Ilmenau

Abstract. Virtual reality exposure therapy (VRET) applications use high levels of fidelity in order to produce high levels of presence and thereby elicit an emotional response for the user (like fear for phobia treatment). State of research shows mixed results for the correlation between anxiety and presence in virtual reality exposure, with differing results depending on specific anxiety disorders. A positive correlation for anxiety and presence for social anxiety disorder is not proven up to now. One reason might be that plausibility of the simulation, namely including key triggers for social anxiety (for example verbal and non-verbal behavior of virtual agents that reflects potentially negative human evaluation) might not be acknowledged in current presence questionnaires. A German scale for measuring co-presence and social presence for virtual reality (VR) fear of public speaking scenarios was developed based on a translation and adaption of existing co-presence and social presence questionnaires. A sample of $N = 151$ students rated co-presence and social presence after using a fear of public speaking application. Four correlated factors were derived by item- and principle axis factor analysis (Promax rotation), representing the presenter’s reaction to virtual agents, the reactions of the virtual agents as perceived by the presenter, impression of interaction possibilities, and (co-)presence of other people in the virtual environment. The scale developed can be used as a starting point for future research and test construction for VR applications with a social context.

Keywords. Co-presence, social presence, social anxiety, virtual environments, psychometrics

Introduction

Virtual Reality Exposure Therapy (VRET) has been proven to be a successful means and a promising supplement for conventional interventions like cognitive behavioral therapy [1]. Applications for anxiety disorder treatment often use high levels of fidelity with the goal of producing a realistic experience for the user, thereby creating high levels of presence [2]. Researchers state that presence has a key role in VRET for anxiety disorders [1]. It is assumed that presence leads to the experience of fear and
anxiety as emotional states in virtual environments [1, 3]. These states have to be induced in order for the clients to confront them and train certain skills to overcome their fear [4]. However, state of research shows mixed results for a correlation between anxiety and presence. Maybe key triggers for social anxiety - verbal and non-verbal behavior that reflects potentially negative human evaluation – might not be acknowledged in current presence questionnaires [3]. The paper presented deals with the psychometric development of a German scale measuring co-presence and social presence for a fear of public speaking scenario, intending to do a first step in order to close this research gap.

Related Work and Rationale

Presence can be described as a user’s subjective psychological response to a VR system or the sense of “being there” [5]. Virtual presence is well researched, which has led to many proposed measures (especially self-report questionnaires; for an overview see [6]). However, a meta-analysis [3] found a medium correlation between presence and anxiety, but the effect size differed strongly across anxiety disorders, with a null-effect for social anxiety. Ling et al. [3] argue that “one might conclude that subjective presence measures do not capture the essential sense of presence that is responsible for activating fear related to social anxiety in individuals.” (p. 8f.), as most presence questionnaires focus on virtual presence or place illusion [7]. According to Slater [7], another presence component has to be taken into account: plausibility refers to the impression that what happens in the virtual world really happens - in spite of the knowledge that it is mediated by technology [3]. In the case of social anxiety, a simulation should include virtual human behavior actions that can be used as indicators for positive or negative human evaluation. Recent developments include more or less realistic virtual human behavior actions (for fear of public speaking see for example [8]), and the state of research underlines the effectiveness of VRET and training applications for fear of public speaking treatment [9, 10]. In order to capture related presence experiences in this social context, researchers recognize two additional types of presence: co-presence and social presence [6] that are seen as interrelated [11].

According to Youngblut [6], co-presence is defined as “[...] the subjective experience of being together with others in a computer-generated environment, even when participants are physically situated in different sites.” (p. 4). The “others” named in the definition don’t have to be human beings but may also be computer-generated agents [6]. Social presence goes a step further than co-presence to address the social psychological idea of personal interaction. Youngblut defines social presence following Biocca’s suggestion [12] as follows: “Social presence occurs when users feel that a form, behavior, or sensory experience indicates the presence of another individual. The amount of social presence is the degree to which a user feels access to the intelligence, intentions, and sensory impressions of another”. Following Biocca, Harms, and Gregg [13], social presence is a multidimensional construct in itself, comprising perception of co-presence, psychological involvement, and behavioral engagement.

In the following sections, a psychometric questionnaire construction for co-presence and social presence for a virtual fear of public speaking scenario is presented.
Method

Items from the Networked Minds Measure of Social Presence [13], GlobalED Questionnaire [14], Para-Social Presence Questionnaire [15], as well as items from related work [11, 16–19] measuring co-presence and social presence were translated into German and adapted to a fear of public speaking scenario. The questionnaire draft focused on audience behavior cues, the speakers perception of the audience, and perceived speaker-audience interaction possibilities. A student sample (N = 151) used a virtual training application for fear of public speaking by giving a presentation in front of a virtual audience and was then asked to rate co-presence and social presence by means of a 28-item questionnaire. The subscales were derived by item- and principal axis factor analysis (PFA) with Promax rotation (λ = 4). Fourteen items were deleted due to cross-loadings and theoretical plausibility, another item was deleted during the item analysis due to corrected item-total correlation < .30.

Results

Four correlated factors (r > .08) were derived in accordance to the eigenvalue criterion > 1, explaining a total of 55.55% of variance (see Table 1). Factor loadings for the four resulting subscales and their respective items are illustrated in Table 2.

Table 1. Eigenvalues, Percentages of Variance, and Cumulative Percentages for PFA Promax Four-Factor Solution for Co-Presence and Social Presence (KMO = .75).

<table>
<thead>
<tr>
<th>Factor</th>
<th>Eigenvalue</th>
<th>% of variance</th>
<th>Cumulative %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Presenter’s Reaction to Virtual Agents</td>
<td>3.68</td>
<td>24.53</td>
<td>24.53</td>
</tr>
<tr>
<td>2. Perceived Virtual Agents’ Reaction</td>
<td>2.25</td>
<td>15.01</td>
<td>39.54</td>
</tr>
<tr>
<td>3. Impression of Interaction Possibilities</td>
<td>1.26</td>
<td>8.40</td>
<td>47.94</td>
</tr>
<tr>
<td>4. (Co-)Presence of other people</td>
<td>1.14</td>
<td>7.61</td>
<td>55.55</td>
</tr>
</tbody>
</table>

The first factor can be summarized as the presenter’s reaction to the virtual agents, measuring behavioral engagement (that the audience’s behavior influenced the speaker’s style of presentation), the speaker’s psychological involvement, including emotional (mood) as well as cognitive responses (distraction).

The next factor measured the virtual agents’ reactions to the speaker, or rather as they are interpreted by the speaker. Again, behavioral engagement (the audience is perceived as being influenced by the speaker’s actions) and psychological involvement (the audience is influenced by the speaker’s mood) load on this factor. It has to be noted though, that some of the items loading on this factor are mirror items for factor 1: addressing the same aspects of social presence, but the speaker attributes psychological and behavioral involvement to the virtual agents.

The third factor addresses what social presence distinguishes from co-presence, the perception of interaction possibilities that go beyond the mere acknowledgement of other people’s presence in a virtual environment. The factor addresses that the speaker...
is perceived by the audience, as well as feelings of connectedness, and potential interaction.

The last factor corresponds to the definition of co-presence given above: the feeling that other human beings share the same virtual space, with a negative item of feeling alone in the environment.

All items showed sufficient corrected item-total correlations > .41 for their respective scales, with a decrease of Cronbach’s alpha if items would have been excluded.

Table 2. Factor Loadings for PFA Promax Four-Factor Solution for Co-Presence and Social Presence Scales (Items translated into English)

<table>
<thead>
<tr>
<th>Item</th>
<th>Factor Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1: Presenter’s Reaction to Virtual Agents (α = .85; n = 141)</td>
<td></td>
</tr>
<tr>
<td>The people’s behavior influenced my style of presentation.</td>
<td>.869</td>
</tr>
<tr>
<td>The people’s behavior had an influence on my mood.</td>
<td>.799</td>
</tr>
<tr>
<td>I reacted to the people’s behavior.</td>
<td>.729</td>
</tr>
<tr>
<td>I was easily distracted by the people.</td>
<td>.628</td>
</tr>
<tr>
<td>Factor 2: Perceived Virtual Agents’ Reaction (α = .81; n = 82)</td>
<td></td>
</tr>
<tr>
<td>Sometimes the people were influenced by my mood.</td>
<td>.875</td>
</tr>
<tr>
<td>Sometimes the people were influenced by my style of presentation.</td>
<td>.821</td>
</tr>
<tr>
<td>The people reacted to my actions.</td>
<td>.734</td>
</tr>
<tr>
<td>I was able to interpret the people’s reactions.</td>
<td>.500</td>
</tr>
<tr>
<td>Factor 3: Impression of Interaction Possibilities (α = .80; n = 139)</td>
<td></td>
</tr>
<tr>
<td>I had the feeling to interact with other human beings.</td>
<td>.796</td>
</tr>
<tr>
<td>I felt connected to the other people.</td>
<td>.762</td>
</tr>
<tr>
<td>I had the feeling that I was able to interact with people in the virtual room.</td>
<td>.753</td>
</tr>
<tr>
<td>I had the impression that the audience noticed me in the virtual room.</td>
<td>.625</td>
</tr>
<tr>
<td>Factor 4: (Co-)Presence of other people (α = .71; n = 140)</td>
<td></td>
</tr>
<tr>
<td>I was aware that other people were with me in the virtual room.</td>
<td>.699</td>
</tr>
<tr>
<td>I had the feeling that I perceived other people in the virtual room.</td>
<td>.680</td>
</tr>
<tr>
<td>I felt alone in the virtual environment.</td>
<td>.543</td>
</tr>
</tbody>
</table>

Note: N = 75 (due to listwise case exclusion) and α = .77 for entire measure.

Factor 1 to 3 showed sufficient reliability with Cronbach’s > 80. This criterion was not met by the fourth factor (Presence of other people), showing Cronbach’s = .71, probably due to the low item number. However, the other dimensions of social presence (psychological involvement and behavioral engagement) as postulated by Biocca et al. [13], are also presented in the factor structure. Therefore, co-presence was included nevertheless, forming a basis for further item development and future scale construction.

Discussion

A German scale measuring co-presence and social presence for fear of public speaking scenarios was developed based on items of existing questionnaires and items from the state of research. Four correlated subscales were derived, measuring the presenter’s
reaction to virtual agents, perceived virtual agents’ reaction to the presenter, impression of interaction possibilities, and presence of other people in the virtual space (co-presence). However, the work presented has several limitations. A student sample rated co-presence and social presence with a German questionnaire. Further, the questionnaire was used to evaluate an alpha-version prototype of a fear of public speaking application including an audience of 30 people. Different settings (raters, VR applications and cultural background and questionnaire language) as well as a more advanced prototype may lead to different ratings. Future research should replicate and supplement our test construction findings for different settings. Still, the study can serve as a starting point for future research and on-going test construction, helping to analyze the interrelations between social anxiety and presence in more detail.

Acknowledgements

The authors thank Patricia Burghardt, Juliane Donath, Evgenia Manicheva, Anne Reif, Carolin Schley, and Jan Schmeier for their input and support to the data collection and data analysis.

References

